Definitions and Graphs of Trigonometric Functions
$sin\alpha =\frac { y }{ r }$
$cos\alpha =\frac { x }{ r }$
$tan\alpha =\frac { y }{ x }$
$cot\alpha =\frac { x }{ y }$
$sec\alpha =\frac { r }{ x }$
$cosec\alpha =\frac { r }{ y }$
Sine Function
y=sin x, $-1\le sinx\le 1$.
Coine Function
y=cos x, $-1\le cosx\le 1$.
Tangent Function
y=tan x, $x\neq k\pi $, $-\infty \le tanx\le \infty$.
Cotangent Function
y=cot x, -1$\le $cot x$\ge $1, $-\infty \le cotx\le \infty$.
Secant Function
y=sec x, $x\neq (2k+1)\frac { \pi }{ 2 }$.
Cosecant Function
y=cosec x, $x\neq k\pi $.
$sin\alpha =\frac { y }{ r }$
$cos\alpha =\frac { x }{ r }$
$tan\alpha =\frac { y }{ x }$
$cot\alpha =\frac { x }{ y }$
$sec\alpha =\frac { r }{ x }$
$cosec\alpha =\frac { r }{ y }$
Sine Function
y=sin x, $-1\le sinx\le 1$.
Coine Function
y=cos x, $-1\le cosx\le 1$.
Tangent Function
y=tan x, $x\neq k\pi $, $-\infty \le tanx\le \infty$.
Cotangent Function
y=cot x, -1$\le $cot x$\ge $1, $-\infty \le cotx\le \infty$.
Secant Function
y=sec x, $x\neq (2k+1)\frac { \pi }{ 2 }$.
Cosecant Function
y=cosec x, $x\neq k\pi $.
Expect Full Notes soon
Comments
Post a Comment